
  

 

Abstract — A feature extraction approach to detect obstacles 

in an indoor environment using monocular sequence of images 

is presented. The approach aims to distinguish between two 

kinds of obstacles – walls and objects. This differentiation is 

essential for a robot to autonomously navigate indoors. The 

approach is split into two steps – feature extraction and 

supervised learning using SVM. In addition to features 

computed using computer vision techniques in a region of 

interest (ROI), some features are computed based on 

unsupervised learning methods. A total of 10 features are 

extracted per ROI and in the second step, a SVM classifies the 

ROI as Wall, Object, or Unknown. Of the 9 datasets, 2 were 

used to train the SVM, and this gave a mean classification 

accuracy of ~76% using the percent misclassification metric. 

From this classification, a robot can autonomously detect walls 

and objects using its one camera as a sensor. The results from 

the presented approach can be used for obstacle avoidance, 

path planning, and visual SLAM. 

 

I. INTRODUCTION 

 

OBOTS are quite able to move about autonomously 

using range and laser sensors, which tend to be 

expensive, bulky, and energy consuming. Employing one 

camera as a sensor is rather preferred. However, a new set of 

challenges is unearthed. Some of these challenges include 

depth estimation, perception, and route planning. For indoor 

environments, route planning can get exceedingly difficult if 

the robot perceives everything as an obstacle based on a 

computed set of features. For instance, if a robot is in the 

bedroom and wants to go into the kitchen to perform a path, 

it should be able to detect a wall and an opening in that wall 

through which it can pass through safely. Using features 

such as Harris corners or Shi and Tomasi‟s Good Features 

To Track [1] can lead to extraction of features on the wall, 

especially, the edges between the wall and the ceiling, 

paintings on the wall, windows, wallpaper, etc. If this 

situation is complicated by the presence of people, chairs 

and tables, the robot often is unable to distinguish between 

the features pertaining to the object and to the wall. 

  Monocular video sequences are cheaper to acquire for a 

household robot and do require less processing power. Depth 

perception is always a challenge in a monocular video 

sequence. Obstacle detection often depends on depth 

perception because the obstacle appears to have depth 

 
  

Ankur Kumar and Ashraf Mansur are students of Robot Learning Course 
at Cornell University, Ithaca, NY 14850. {ak364, aam243} @ cornell.edu. 

 
Figure 1: The result of classification on a frame of a dataset. 

The regions with walls are marked in white, while the regions 

with an obstacle are marked in red. 

characteristics when put against any scene, which lies behind 

the obstacle. Without depth information, it can get difficult 

to estimate if the obstacle is indeed an obstacle or part of 

some cluttered background. Optical flow can record the  

change in the robot‟s environment but the generated flow 

field can have inaccurate information, especially, if the robot 

is a helicopter or moving irregularly due to control issues. 

Though optic flow is used as one of the 10 features 

presented in this paper, other features do make up for its 

deficiencies. The popular SIFT [2] by Lowe is region based 

and often yields numerous unwanted features. This can get 

cumbersome to process.  

This paper describes the intuition behind every feature 

used to differentiate between walls and objects. This is 

followed by details of the experiments and a discussion of 

the results. An example snapshot of the result from feature 

extraction followed by classification is shown in Figure 1.  

 

II. RELATED WORK 

 

Extracting features from a region of interest in an image is 

one of the most important problems in computer vision and 

is the gateway to image matching and object recognition. 

Through the voluminous work in the area, a handful of 

papers were selected that might be useful in differentiating 

between walls and objects in a scene. One of the approaches 

for retrieving object descriptors is using SIFT, which is 

primarily used for image matching and object recognition 

[2]. Another method for extracting feature descriptors is to 
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use shape contexts [3] and steerable filters [4]. Newer 

methods such as PCA-SIFT, which is the use of Principal 

Component Analysis (PCA) on the SIFT descriptors to find 

the [5] also can be used to find descriptors. Moment 

invariants described in [6] is yet another method for finding 

feature descriptors. A multi-scale algorithm for the selection 

of salient regions as feature descriptors is described in [7]. 

This algorithm treats saliency as local complexity defined by 

an entropy function. Another well-known method for finding 

feature descriptors is the computation of the histogram of 

gradients described in [8]. Other methods for extracting 

feature descriptors will be explored in Section III (B). 

 

III.   APPROACH 

 

A. Methodology 

Features described in Section III (B) are extracted by ROI 

for two labeled training datasets. This is used to train the 

SVM. For the test dataset, features are extracted for the ROI 

and then classified using an SVM. Once classified an 

accuracy metric based on percent misclassification is 

computed (Section IV). 

 

B. Features 

Ten features are computed for a ROI to distinguish 

between a wall or ceiling or floor and an object. The features 

range from being histogram based, spatial based, and 

gradient based. The input images are converted from RGB to 

grayscale before features are extracted. 

 

1) Histogram of Gradients (HOG) 

 

This method described by Dalal et al in [8] computes the 

occurrences of particular gradient orientations in localized 

portions of the image. Basically, it is a binning algorithm for 

gradient orientations. The premise of these descriptors is that 

local object appearance and shape within an image can be 

described by the distribution of intensity gradients or edge 

directions. Dividing the image into small connected regions 

and the gradient or edge directions within this region are 

compiled into a histogram, which represents the descriptor 

for the region. HOG is invariant to geometric and 

photometric transformations which tend to appear in large 

spatial regions. HOG aids in understanding gradient 

directions of ROI with walls vs. ROI which have objects or 

objects and walls. The HOG should behave differently in 

both cases. 

 

2) Energy e1  

 

The energy per pixel in an ROI based on its gradients 

signifies their contribution to the ROI. Preserving energy in 

an ROI would be to suppress pixels with lower energy and 

keeping the pixels with highest energy. This energy 

calculation per pixel is especially useful when comparing a 

ROI that contains a wall vs. a ROI that contains an object or 

object and a wall. The energy e1 is defined in equation 1 [9]. 

 

III
yx

e )(1  (1) 

Since the above energy will be computed per pixel in the 

ROI, PCA is executed on the energy values to determine the 

principal components of the energy function. Using this 

notion, the principal components of walls will differ from an 

obstacle.  

 

3) Energy of HOG 

  

A seam carving approach is taken where the lower energy 

pixels are suppressed while the higher energy pixels are 

retained in the ROI. Computing the energy of HOG, eHOG, 

will indicate the energy contained in various gradient 

orientations. The energy contained in various gradient 

orientations will differ for walls vs. objects. Equation 2 

defines eHOG [9]. 
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Once again, PCA can be carried out on eHOG to retrieve the 

principal components of energy contained in various 

gradient orientations. These principal components will 

contain similar information for all ROI containing walls and 

would be dissimilar for ROIs containing obstacles. 

 

4) Hessian Matrix 

 

The Hessian matrix is based off second partial derivatives 

and these matrices encode shape information. The 

determinant of the Hessian matrix can be used to determine 

blobs with automatic scale selection. Equation 3 shows the 

Hessian matrix, where Lxx(x) is second partial derivative in 

the x direction. 
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The eigenvalues of the Hessian matrix can be used to 

determine tubular, blob, and planar structures in an ROI 

[10]. Computing the determinant and eigenvalue of the 

Hessian matrix can be used to characterize the possible 

shape of the object/obstacle in an ROI. For a wall, the 

eigenvalues of the Hessian will represent a planar surface. 

 

5) Moments 

 

Moment invariants described in [6] indicate a certain 

particular weighted average of the image pixel‟s intensities. 

Moments can describe the centroid and the orientation of a 

ROI. Higher order moments, Mij, describe various shape 

measures. Computation of nth order moments are given by 



  

equation 4. Moments are translation, scale and rotational 

invariant and thus, provide a valuable descriptor. Moments 

pertaining to walls can be learned by the SVM classifier, 

which it can then employ to classify ROI as a wall. Moments 

up to 3
rd

 order were used as features. 
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6) Texture 

 

Using the algorithm presented in [11], moment based texture 

for an ROI is implemented as a feature. Texture can be used 

to identify surfaces in an image and computing moments in 

local regions of the image can be used as texture features. 

Image moments within a window around each pixel are 

calculated based on moment masks as shown in Figure 2.   

 

 
Figure 2: Moment masks, up to 2nd order, for computing  

image moments around each pixel 

The texture features from these moments are determined by 

applying a nonlinear transformation followed by an 

averaging operation. The nonlinear operation used is the 

tanh function. The size of the window determines if global 

features are detected. Once the texture feature is calculated, 

its „strength‟ is determined by taking the average of the 

absolute values of the texture feature. The texture for walls 

will be quite different from the texture of an object or an 

object and a wall within a ROI. Walls usually have texture 

mostly due to paint and their planar properties. Object and 

walls residing within the same ROI will have a more 

complex texture. Thus, this difference in complexity makes 

texture a feature to examine. 

 

7) Optical Flow Divergence 

 

Optical flow divergence for detection of obstacles is 

discussed by Nelson and Aloimonos in [12]. Optic flow for 

two consecutive frames of the ROI is computed based on 

hierarchical Lucas Kanade optical flow method using 

pyramids. The flow divergence of the optical flow in the 

ROI is computed as shown in equation 5. 
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In equation 5, F denotes the computed optical flow. U and V 

denote the velocities in the two dimensions, x and y, 

respectively. When an obstacle is in relative motion towards 

the camera, the camera produces an expanding image. As a 

result, the intensity values have diverged from its previous 

point outwardly and this causes the div(F) to be positive. 

Subsequently, an ROI can be classified as whether it 

contains an obstacle or not based on the positivity of div(F). 

A wall would have low levels of div(F), while an obstacle or 

an obstacle and a wall would have higher levels of div(F) 

 

8) Entropy of Histogram 

 

The histogram of intensities for a ROI is calculated. The 

entropy for a ROI with objects should be much higher than 

the entropy for a ROI with just a wall. The number of salient 

features usually increases when relatively complex 

structures such as objects appear in an ROI containing a 

wall, which have less salient features. Equation 6 shows the 

calculation for entropy of the histogram and p contains 

histogram counts. 
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9) PCA of Histogram 

 

Principal Component Analysis (PCA) of the histogram of 

intensities for a ROI will characterize orders of variability in 

the ROI. For instance, the variability of a wall will be much 

lower and hence, a principal component characterizing this 

variability will be computed. This principal component can 

be learned and when a similar match to this principal 

component characterizing the variability of the wall is found 

in the test data, the ROI in the test data can be marked as a 

wall. In a way, PCA reveals the internal structure of the ROI 

which explains the variability of the histogram of the ROI.  

 

10) Blind Source Separation and ICA 

 

Blind Source Separation (BSS) is used to seek independent 

unknown sources which are linearly combined in an 

unknown fashion into a mixture. Using higher order 

statistics, Independent Component Analysis (ICA) is able to 

solve this BSS under certain assumptions such as non-

Gaussianity of the sources. When an object is in the vicinity 

of a wall, the histograms of the wall and the object get 

linearly combined in an unknown fashion into a histogram 

mixture. This histogram mixture can be treated as a blind 

source separation problem and ICA can be utilized to 

separate the two sources of the histogram mixture. This 

approach has been inspired by Ankur Kumar‟s work on 

timbre extraction using blind source separation [13]. 

 



  

 
Figure 3: Wall in a ROI 

 

 

 

 

 
Figure 4: Histogram of Wall from Figure 3 

 
Figure 5: Wall and Object in a ROI 

 
Figure 6: Histogram of Wall and Object in Figure 5 

 

Figure 3 shows a wall and its corresponding histogram in 

figure 4. Figure 5 shows a wall and an object in a ROI and 

its corresponding histogram in Figure 6. A histogram 

mixture containing the histogram of Figure 4 and an 

unknown histogram of the object were mixed together to 

form the histogram mixture shown in Figure 6. This 

histogram mixture can be analyzed using blind source 

separation techniques under the assumption of non-

Gaussianity of the sources of the histogram mixture. The 

separation of the sources is achieved by estimating the “de-

mixing” matrix acting on the histogram mixture to separate 

the sources. The separation is done in the Fourier Domain 

because histogram is based on frequency counts of intensity 

values. 

A Short-Time Fourier Transform (STFT), shown in 

equation 7, is used to compute the Fourier Transform of the 

histogram mixture based on a moving window scheme. 

Since features are extracted on grayscale images, the length 

of the STFT is limited to 256. The STFT acting on the 

histogram mixture will result in the output F. 

 

t

tj dtetgtxSTFT )()(),(  (7) 

 

The histogram mixture or mixture signal needs to be 

“whitened.” Whitening strives to attain decorrelation 

between several dimensions of a dataset by applying a linear 

transformation with the use of second order statistics i.e. 

variance. The basic idea of PCA is to provide the set of 

components that gives the maximum variance of the dataset. 

Using PCA to “whiten” the histogram mixture, the variance 

has been maximized and the redundancy reduced. The 

matrix with retained eigenvectors, EV, and the diagonal 

matrix corresponding to the retained eigenvalues, ED, can be 

used to find the whitening matrix, V, as shown in equation 8. 
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The dimensionally reduced whitened version of F called 

FW is computed as shown in equation 9. The rows of FW are 

decorrelated. 
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Until now, only second order statistics have been 

exploited. With the notion of ICA, higher order statistics are 

used to perform source separation on the whitened matrix 

FW. The ICA operation results in a transformation matrix H, 

which aids in determining the de-mixing matrix, DM. During 

the ICA operation, non-Gaussianity is measured by the 

approximation of negentropy. Fast ICA, a fixed point 

algorithm, is employed with a non-quadratic function, 

chosen from a hyperbolic family of functions, to maximize 

negentropy. Fast ICA is used on the whitened matrix, FW, 

and the resulting H is used to find the de-mixing matrix, DM, 

as shown in equation 10. Equation 11 can be used to 

compute the mixing matrix, M, can also be determined and 

its columns represent the spectral information of the 

individual source.  
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Finally, the independent component vectors, as a matrix 

SI, can be derived by multiplying the original STFT, F, with 

the de-mixing matrix, DM. This is given in equation 12. The 

row vectors of SI are called the ICA filters and these carry 

the varying gain of the spectral components of the individual 

sources. For the entire process of blind source separation, it 

is assumed that the ROI can contain a maximum of two 

sources - the wall and the object or obstacle. 
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The whitening matrix, V, the de-mixing matrix, DM, and 

the sources, SI, form a feature vector for this feature 

extraction stage. Each column of SI represents an object and 

a wall as sources of the histogram mixture. 

 

C. Classification Algorithm 

Support Vector Machine is chosen as the classifier to 

discriminate between the two classes, wall and object, based 

on the 10 features mentioned in Section III (B). In particular 

we train a binary SVM model for each class type using flow 

divergence only, BSS only, and all features. A sigmoid tanh 

function is used as the kernel for the SVM. SVM
light

 was 

used to classify and run the experiment [14]. 

 

IV. EXPERIMENTS 

 

The experiments conducted correspond to the trained 

models: flow divergence (FD) only, BSS only, and all 

features. 

Specifically, each experiment consists of 7 test datasets. 

To build our dataset, we created obstacle courses in 

Phillips Hall corridors, and recorded the course with a laptop 

camera placed on wobbly lab chair. Due to the unstable 

movements of the chair, we were able to simulate some 

shaky/noisy images which are expected from the rotorcraft 

camera. In particular, we recorded 9 videos at 25 frames per 

second, each having length less than one minute. 

 From the 9 videos, we labeled 2 for the training set. To 

label the training set, each frame was evenly partitioned 

based on aspect ratio into regions and manually annotated as 

wall, floor, ceiling, or object. These regions were of size 

80x80. In particular, any portion of an object took preference 

over walls during labeling. For the initial baseline estimate, 

since our classification algorithm only discriminates 

between walls (includes floor and ceiling) and objects, our 

performance baseline using random selection would be 50% 

accuracy/error. 

 The system then classified all 7 test datasets using the 3 

training model categories for each class type – walls and 

objects. Using the predictions of the SVM classifications, we 

marked each region of the dataset frames based on max vote 

prediction between wall and object. The predictions were 

then verified by inspection of the annotated test data every 

50
th

 frame of the dataset. The performance results computed 

based on the following misclassification metric are captured 

in Table 1: 

  

 

 

 

Dataset Base% FD% BSS% All% 

Obs5 50 15 42 12 

Obs9 50 35 18 22 

Obs3 50 40 55 20 

Obs6 50 20 25 35 

Obs7 50 20 25 35 

Obs8 50 25 30 20 

Obs10 50 45 55 25 
Table 1 Captures precent misclassification for baseline 

(Base%),  flow divergence (FD%), BSS%, and all features 

(All%). Note that the best misclassification percentage is 0 

 The misclassification percentages are represented as 

estimates to mitigate human error in labeling (i.e. those 

introduced when distinguishing between mounted objects on 

walls from walls, etc). 

 

100*
ificationstotalclass

iedmisclassifiedmisclassif objectswalls



  

V. ANALYSIS AND DISCUSSION 

 

From the results above we see that using all 10 features 

helped improve overall system performance for 4 out of the 

7 datasets. 

For the flow divergence experiment, we observed via 

inspection of the predicted label outputs, that this feature 

doesn‟t detect objects well and possibly not at all. The 

feature‟s performance is reasonable since it only chooses the 

wall label which is the most frequent in our dataset.  

For the BSS experiment, we observed some correct object 

and wall classifications; however the feature appears to 

favor the object label over wall for non-object regions. 

Although the histogram mixture can be separated into wall 

and object, the de-mixing matrix will differ from scene to 

scene. This is because the histogram mixture differs from 

scene to scene based on the type of objects present in the 

scene. This will cause variability in the de-mixing matrix, 

which is learned by the SVM during the training phase. 

For the final experiment, we observed relatively good 

performance for the Obs3 dataset (Phillips Lab contained 

clusters of objects in tight quarters), Obs5 & Obs8 (Phillips 

corridor with dim lighting and few objects), Obs9 (Duffield). 

Below are some snapshots from the datasets that our system 

performs well on. 

 

 
Figure 7 : Captures classification of cluster of objects in 

Phillips Lab (Obs3). 

 

 
Figure 8 : Duffield Atrium (Obs9). 

  

 

 

 

Figure 9 : Phillips Corridor with dim lighting (Obs5). 

 

 The performance results for Obs6 and Obs7 are poor due 

to limited lighting and mislabeling of glass showcases 

containing obstacles. However from a robot navigation 

standpoint, the labeled glass regions would be avoided 

eventually since it contains an obstacle. The figure below 

captures the label prediction of our system for Obs6 

(similarly for Obs7).  

 



  

 
Figure 10 : Phillips Corridor ramp containing glass showcases 

(obs6). 

 Our system does not consider spatial coherence between 

different ROI. Two ROI next to each other are treated 

independently and the SVM classifies the ROI as an obstacle 

or wall. Similarly, two ROI identical in the coordinate space 

but differing temporally (two frames) will also be treated 

independently and classified independently. This is a 

limitation of our system and can be greatly improved if other 

learning techniques such as Markov Random Fields be 

employed. 

  

VI. CONCLUSION AND FUTURE WORK 

 

Based on our approach and the experiments conducted, 

we see that the selected features perform relatively well in 

distinguishing between walls and objects but it may not be 

feasible to compute all these features for real-time 

processing. Applying a feature selection algorithm or 

maximum relevance minimum redundancy technique 

would help reduce our feature set to the most salient given 

particular accuracy and time constraints. In addition, a 

better supervised learning with Markov Random Fields 

may improve the accuracy of the system. 

Additionally, to improve labeling of the datasets, we 

could use multiple annotators that comply to an inter 

annotator agreement (scored appropriately via Cohen‟s 

Kappa [15] or Fleiss‟ Kappa [16]) to generate consistent 

labels for data. Once the system is real-time, obstacle 

avoidance methods involving path planning can be tested. 
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